Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions

نویسندگان

  • Yeqing Lan
  • Baolin Deng
  • Chulsung Kim
  • Edward C Thornton
چکیده

The effects of soil minerals on chromate (CrVIO42-, noted as Cr(VI)) reduction by sulfide were investigated in the pH range of 7.67 to 9.07 under the anoxic condition. The examined minerals included montmorillonite (Swy-2), illite (IMt-2), kaolinite (KGa-2), aluminum oxide (gamma-Al2O3), titanium oxide (TiO2, P-25, primarily anatase), and silica (SiO2). Based on their effects on Cr(VI) reduction, these minerals were categorized into three groups: (i) minerals catalyzing Cr(VI) reduction - illite; (ii) minerals with no effect - Al2O3; and (iii) minerals inhibiting Cr(VI) reduction- kaolinite, montmorillonite, SiO2 and TiO2 . The catalysis of illite was attributed primarily to the low concentration of iron solubilized from the mineral, which could accelerate Cr(VI) reduction by shuttling electrons from sulfide to Cr(VI). Additionally, elemental sulfur produced as the primary product of sulfide oxidation could further catalyze Cr(VI) reduction in the heterogeneous system. Previous studies have shown that adsorption of sulfide onto elemental sulfur nanoparticles could greatly increase sulfide reactivity towards Cr(VI) reduction. Consequently, the observed rate constant, kobs, increased with increasing amounts of both iron solubilized from illite and elemental sulfur produced during the reaction. The catalysis of iron, however, was found to be blocked by phenanthroline, a strong complexing agent for ferrous iron. In this case, the overall reaction rate at the initial stage of reaction was pseudo first order with respect to Cr(VI), i.e., the reaction kinetics was similar to that in the homogeneous system, because elemental sulfur exerted no effect at the initial stage prior to accumulation of elemental sulfur nanoparticles. In the suspension of kaolinite, which belonged to group (iii), an inhibitive effect to Cr(VI) reduction was observed and subsequently examined in more details. The inhibition was due to the sorption of elemental sulfur onto kaolinite, which reduced or completely eliminated the catalytic effect of elemental sulfur, depending on kaolinite concentration. This was consistent with the observation that the catalysis of externally added elemental sulfur (50 muM) on Cr(VI) reduction would disappear with a kaolinite concentration of more than 5.0 g/L. In kaolinite suspension, the overall reaction rate law was:-d[Cr(VI)]/dt = kobs[H+]2[Cr(VI)][HS-]0.70.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Study on the Factors Affecting Hexavalent Chromium Bioreduction by Bacillus cereus

Chromium through natural processes and human activities enters the air, soil and water. Chromium-resistant bacteria are capable of reducing toxic Cr(VI) to less toxic Cr(III). In this work, batch studies were conducted to evaluate the effect of environmental factors on the rate of Cr(VI) reduction from synthetic wastewater of metal plating industry by Bacillus cereus under aerobic conditions. T...

متن کامل

Influences of water vapor on Cr(VI) reduction by gaseous hydrogen sulfide.

In Situ Gaseous Reduction (ISGR) using hydrogen sulfide (H2S) is a technology developed for soil remediation by reductive immobilization of contaminants such as hexavalent chromium (Cr(VI)). Deploying the technology requires us to obtain a much-improved understanding of the interactions among the contaminants, H2S, and various soil components. In this study, Cr(VI) reduction by gaseous H2S was ...

متن کامل

Investigation of the Efficiency of Various Concentration of Organic Compounds in the Bioaugmentation Process for Reduction of Hexavalent Chromium in Soil

Background: Cr (VI) is a highly toxic and carcinogenic contaminant and that are used in the steel industry and other chemical industries such as the leather industry, pigment production, electroplating of metals and the production of anticorrosive compounds. Its waste enters the environment and subsequently enters the water and food sources. Therefore, in order to protect the environment as wel...

متن کامل

Kinetic study of hexavalent Cr(VI) reduction by hydrogen sulfide through goethite surface catalytic reaction

Hexavalent chromium reduction by sulfide in the presence of goethite was studied through several batch experiments. Under our specific experimental conditions including 20 μM of hexavalent chromium, 560–1117 μM of sulfide and 10.61– 37.13 m2/L of goethite at pH of 8.45 controlled by 0.1 M borate buffer, the obtained hexavalent chromium disappearance rate was –d[Cr(VI)]/dt = k[surface area of go...

متن کامل

Preparation of ZnO nanocatalyst supported on todorokite and photocatalytic efficiency in the reduction of chromium (VI) pollutant from aqueous solution

In this research, a new effective photocatalyst was prepared by supporting ZnO on a Todorokite (TD). This catalyst was characterized by employing scanning electron microscopy (SEM-EDX) and X-Ray Diffraction (XRD) patterns. The optical properties of the samples were measured by diffuse reflectance spectroscopy (DRS). The purpose of using the ZnO/TD as a photocatalyst was to reduction Cr(VI), whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Geochemical Transactions

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2007